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H I G H L I G H T S

• Fuzzy logic is used to predict cooling energy use considering behavioral economic principles.

• The model accounts for both the efficiency and curtailment dimensions of household consumption.

• The model produces plausible behaviors and the results match historical values reasonably well.
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A B S T R A C T

To gain a fundamental understanding of the factors driving consumer energy behavior and for more effective
policy-making, the development of energy consumption models taking into account key behavioral economic
concepts is essential. In this direction, this paper presents a fuzzy logic decision-making model incorporating the
concepts of bounded rationality, time discounting of gains, and pro-environmental behavior. The fuzzy model is
used to characterize and predict consumer energy efficiency and curtailment behaviors in the context of re-
sidential cooling energy consumption. The model is developed from the perspective of the human decision-
maker and the rules based on human reasoning and intuition. It takes into consideration monetary, personal
comfort and environmental responsibility variables to yield predictions of one’s air-conditioning purchase and
usage decisions. The results from running the model multiple times to simulate a real large urban population are
found to match historical cooling energy use data reasonably well. This allows modelers some degree of con-
fidence in the model. Moreover, perturbing key input variables produces plausible behaviors, thus providing
additional validation to the model. This work demonstrates the feasibility of fuzzy logic as a powerful method for
combining quantitative economic and physical factors with qualitative behavioral concepts in a single mathe-
matical framework for better prediction of human energy behavior, and greater fundamental understanding of
the “why” behind energy use that conventional building energy simulation models do not address.

1. Introduction

The residential sector accounts for significant amounts of energy
consumption and greenhouse gas (GHG) emissions. Residential build-
ings account for 16–50% of total energy use at the national level and
31% globally [1,2]. Therefore, energy efficiency policies targeting the
residential sector are crucial for reducing overall energy demand and
GHG generation. Oftentimes, however, there are significant differences
between the realized and targeted levels of efficiency [3]. In other
words, “energy efficiency gaps” or “energy efficiency paradoxes” [4–6]
are widespread in markets. This is likely because policy-makers typi-
cally neglect the behavioral aspect of energy use despite the large body
of evidence proving the significance of “non-economically rational”

human behavior in residential energy decision-making.
Conventionally, energy policies are formulated largely based on

traditional, neoclassical economic principles, which view human deci-
sion-making as independent from non-monetary values and goals [7],
and assume agents make decisions under complete economic ration-
ality, i.e., that they are perfectly capable of making utility maximizing
choices. It is starting to be recognized though, by behavioral economists
[8] who strive to integrate psychological insights into economic ana-
lysis, that human decisions are also driven by personal values, judgment
and feelings, and that human rationality is bounded. Nevertheless, the
application of behavioral economics to the formulation of energy po-
licies is still very limited.

Hence, this paper aims to advance the integration of behavioral
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economic concepts to residential energy behavior modeling for the
purpose of policy-making. Specifically, fuzzy logic [9] is employed to
construct an integrated energy behavior model to characterize and
predict consumer energy efficiency and curtailment behaviors [10]. The
former is about consumers’ decisions to invest in energy-efficient ap-
pliances, while the latter concerns their day-to-day use of the appli-
ances. Though the two behaviors are motivated by different psycholo-
gical drivers [11,12], they are best studied simultaneously [12] for a
holistic view of the problem. However, efficiency behavior is under-
represented in past studies [13]. This is despite policies targeting it (as
compared to policies targeting curtailment behavior) being generally
more acceptable to the public [14–16] and having greater energy
saving potential [13,17]. Thus, this paper seeks to combine the two
behaviors in a single fuzzy framework.

This paper also seeks to incorporate pro-environmental behavioral
constructs and their effects on consumer energy behavior to the fuzzy
model. At present, while the existence of these altruistic constructs is
well accepted in behavioral economics, it is still unclear their exact
relationship with energy efficiency and curtailment behaviors [18–22].
In this paper, through experimentation with different configurations of
the fuzzy model developed, it is gained new insights into the matter.

Fuzzy logic, an artificial intelligence method, uses linguistic vari-
ables and heuristic associations to approximate, in numerical terms,
human reasoning and intuition. It is thereby suitable for combining
quantitative economic and physical factors with qualitative behavioral
concepts. However, only a few fuzzy logic-based simulations of re-
sidential energy management have thus far been conducted [23–28].
These studies focused mostly on just energy usage relating to users’
curtailment behavior with little or no regards for their efficiency be-
havior. Further, some of the past studies included only the effects of
monetary terms [26]. Others included also non-monetary manifesta-
tions [23–25,27,28] but without proper consideration of the underlying
behavioral drivers. Thus, the fuzzy model developed in this present
paper can be seen as a major improvement over existing related fuzzy
models given its incorporation of major behavioral economic principles,
and integration of consumer energy efficiency and curtailment beha-
viors to yield a more holistic take on modeling residential energy de-
cision-making.

To the best of knowledge, this present work is the first to use fuzzy
logic to model residential energy consumption from the perspective of
behavioral economics. As such, it contributes to the literature in its
innovative use of fuzzy logic: (i) to integrate key behavioral concepts
(bounded rationality, time discounting and pro-environmental beha-
vior) with economic, demographic and climate variables in the context
of residential energy management; (ii) to capture both the efficiency
and curtailment behaviors of residential consumers by modeling energy
decisions not only at the stage of usage, but also at the prior stage of
appliance purchase; and (iii) to simulate the long-term energy con-
sumption of a large urban population. As emphasized by Stern [29], the
integrating of variables and concepts of different natures by this study is
essential for a comprehensive fundamental understanding of the factors
driving domestic energy use. The fuzzy model developed is used to
predict the average monthly and annual cooling energy consumptions
in Hong Kong, and is validated by comparing the results against his-
torical data. Further validation of the model is realized by conducting
sensitivity analyses of key model inputs. From the results, new insights
are obtained especially in regards to pro-environmental behavior whose
exact influence on residential energy behavior is still uncertain. It is
hoped the results will contribute to the development of more effective
energy policies.

2. Background

2.1. Modeling residential energy decision-making

Energy behavior is a multidisciplinary subject that has been studied

by investigators from a wide range of disciplines, from social sciences to
engineering. Thus, studies on the topic can vary significantly in their
objectives and methods. In a comprehensive review on residential en-
ergy behavior modeling studies, Lopes et al. [30] grouped the studies
into three main categories: (i) quantitative studies which relied mostly
on engineering and statistical methods to predict energy use; (ii) qua-
litative studies which focused on socio-psychological frameworks and
theories to explain energy consumption; (iii) and finally, hybrid studies
combining elements from the 1st and 2nd categories. This present study
can be placed under the 3rd category.

2.1.1. Quantitative studies
Studies in this category rely primarily on technical models to

quantify energy consumption. The models can be classified as either
“top-down” or “bottom-up” [2,31–35]. Top-down models typically
focus on energy supply and demand at the macro level to capture long-
term trends, and are usually such that the residential sector is just one
among many sub-systems. Top-down models can be further divided into
technological and econometric models; the former are mostly about the
effects of housing stock characteristics, appliance ownership and trends
in technology, while the latter mostly about the effects of pricing (e.g.
time-of-use rates and dynamic pricing [34]), income and other eco-
nomic variables [2,31]. In contrast, bottom-up models aim to predict
energy consumption at the regional and national levels by extrapolating
from estimated data for selected individuals, households and/or
buildings. Bottom-up models can be further characterized as statistical
or engineering. The former employs statistical techniques (e.g. regres-
sion, conditional demand analysis, neural networks) [35–38] to identify
representative patterns, while the latter utilizes detailed simulation
models based on building characteristics and climate variables to make
predictions [39,40]. In addition, there also exist hybrid models that rely
on a combination of both statistical and engineering methods [41]. For
more on top-down and bottom-up models and their differences, refer to
Swan and Ugursal [2], Kavgic et al. [31], Grandjean et al. [33], Su-
ganthi and Samuel [32], and Fumo and Biswas [35].

Quantitative studies are important as they provide reliable ways of
quantifying consumption, and are essential for assessing energy po-
licies, e.g. technology adoption and energy efficiency policies.
However, they do not adequately consider human behavioral factors
and their effects. This is especially true in the case of top-down models
that pay scant attention to individual end-users, and where any re-
ference to human behavior is typically through the traditional eco-
nomic notions of complete rationality and utility maximization. As for
bottom-up models, thus far, their use to represent human behavior is
still limited and mostly confined to the contexts of pre-determined oc-
cupancy schedules and equipment use patterns [30]. (While there are
exceptions outside these contexts [42–44], they are few.) This is despite
their greater focus on the decisions of individual agents and greater
acknowledgment of the role of behavioral factors (as compared to top-
down models).

2.1.2. Qualitative studies and behavioral economic concepts
Studies in this category are essentially behavioral studies concerned

with the role of behavioral factors in human energy decision-making.
See Wilson and Dowlatabadi [18], Faiers et al. [45] and Frederiks et al.
[46] for comprehensive reviews of the subject. The reviews demon-
strate the complexity of the problem given the large number of cogni-
tive biases and behavioral anomalies at play. Behavioral economic
theories are of central importance to studies of this category as they are
essential for explaining decision-making inconsistencies due to the
bounded rationality of humans, their time discounting of gains and pro-
social behavioral influences [47].

Bounded rationality refers to the deviation of individuals from
complete economic rationality due to constraints in knowledge, cog-
nition and time [48]. According to Nobre [49], it leads to decision-
making based on imperfect information and heuristics that prevents
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agents from identifying optimal solutions to everyday life problems.
This leads to them making alternative decisions that are just adequate
or approximately optimal. Bounded rationality, however, does not
mean acting irrationally or in an unreasonable manner [50]. Instead,
boundedly rational behavior can be thought of as a deviation from that
is “expected” (as dictated by monetary terms and as defined by classical
economics) due to the above-mentioned limitation as well as non-
monetary considerations, viz. personal preferences and values, emo-
tions, social interactions and psychological factors. [8]. The failure of
energy policies to properly account for bounded rationality has been
identified as a primary reason for energy efficiency gaps due to un-
anticipated consumer responses [5,51]. However, to account for
bounded rationality is not straightforward as there still lacks a single
widely accepted method to model and predict its effects on one’s energy
decisions [5].

Agents’ time discounting of gains occurs due to differences in their
valuation of future benefits versus present ones. Agents time discount
not only monetary items, but non-monetary gains and pleasures as well.
Those with a high time discount rate regard future rewards as highly
discounted and thus, of lesser importance than present rewards. In their
deliberations, these individuals (often characterized as “present-
biased”) tend to give a low weight to the future consequences of present
actions. In contrast, agents with a low time discount rate are more
willing to pay a cost today to reap future benefits [52]. Compared to
those with a high discount rate, these individuals assign greater im-
portance to future consequences. In relation to energy decisions, in-
dividuals with a high time discount rate are less likely to purchase
energy-efficient appliances as compared to those with a low time dis-
count rate since such appliances are generally more expensive to pur-
chase but cheaper to operate [53]. Finally, it is worth noting that in-
dividuals’ time discount rates can change with time; when this is the
case, the rates are said to be time inconsistent [18].

Pro-social behavior often manifests as pro-environmental behavior,
of which the antecedents are certain psychological constructs [21] that
when triggered, prompt one to take appropriate actions to protect the
environment. These constructs have been referred to in the literature as
one’s environmental “values” [20,54,55], “beliefs” [19,21,54,56–58],
“concerns” [20,57], “attitudes” [19,21,56], “drivers” [59], “awareness”
[60], etc. (While some have viewed these different terms to mean the
same concept [19], most distinguish between them and see them as
having subtle differences.) However, it is as yet unclear their exact role
in pro-environmental behavior with specific regard to energy man-
agement. This has led to the debate on whether these constructs indeed
constitute significant drivers of energy efficiency and curtailment be-
haviors [18,21]. Some survey-based studies have found just a weak
correlation between the constructs and home energy use [19,20], while
others have observed a strong correlation [21,22].

To summarize, qualitative energy studies are more theoretical (as
opposed to quantitative studies) and are mostly about the psychological
factors (affecting consumer values, preferences, and personal habits)
and contextual considerations (as defined by the choices available,
economic and technological incentives afforded, and social habits of
peers) driving energy decisions [18]. Different from quantitative stu-
dies, qualitative studies mainly rely on methods involving surveys, in-
terviews, and focus groups [30,61]. However, while these studies have
made great progress in explaining the non-monetary aspects of re-
sidential energy consumption, there still lacks a unified framework
integrating the various concepts and principles. Without a single fra-
mework, the studies reduce to simply a series of ad-hoc examples and
narratives [46] that stand isolated and unable to link to any quantita-
tive simulation.

2.1.3. Integrated studies
As described above, relying on just either a quantitative or quali-

tative approach leads to weaknesses. Specifically, taking a quantitative
approach employing traditional economic, engineering and/or

statistical techniques exclude consideration of key behavioral factors,
while taking a qualitative approach employing surveys, interviews and/
or focus groups results in disjointed findings due to the lack of a unified
framework to integrate major concepts. Thus, as energy behavior is
complex with multiple dimensions, an integrated approach combining
both quantitative and qualitative methods and their findings is essen-
tial. Such an approach however, is not simple given the multi-
disciplinary interdisciplinary nature of the problem.

In practice, very few integrated studies exist to date. An early study
combined energy modeling with interviews aimed at revealing con-
sumers’ energy consumption preferences. In the study, an energy ac-
counting software was used to inform participants of their energy use
amounts, and to present them with alternative choices [62]. The results
based on the participant responses revealed a wide range of user energy
consumption profiles of varying levels of willingness to change. In other
studies, user energy profiles were extracted by comparing data from
modeling simulations with empirical data acquired through examining
written time diaries of participants detailing their daily activities
[63,64]. While these studies have provided new insights and initial
guidance on conducting integrated studies, they are still few and lim-
ited in scope. This leaves a gap in the literature that remains to be filled.

To contribute to filling this gap, this current paper aims to develop
an integrated energy behavior model using fuzzy logic, an artificial
intelligence method. Unlike the previous studies described above, in-
tegration in this study is performed not by quantitative analysis of
empirical behavioral data, but instead, by using fuzzy logic to provide a
means for the mathematical expression of human behavioral factors,
preferences and perspectives, and the placing of these elements in a
single framework in coherence with other physical and socio-economic
variables. This allows for the mapping of the different components and
their interactions, which is vital for identifying the relative importance
of each in regard to the decision-making process as a whole. As dis-
cussed by Stern [29], research of this kind and in this direction is
presently considered key towards a much needed holistic under-
standing of household energy use.

2.2. Fuzzy logic

2.2.1. Basic concepts
The theory of fuzzy sets was first introduced by Zadeh [9] in 1965 in

an attempt to mathematically represent imprecise (or “fuzzy”) data.
Fuzzy logic enables the assignment of numerical values to linguistic
terms (e.g. “large,” “small,” “hot,” “cold,” “better”) whose boundaries
are inexact. Fuzzy logic has been mooted by some [49,65,66] as sui-
table for simulating natural, real-life situations fairly correctly. In this
subsection, to introduce fuzzy logic, it is provided a brief description of
its main concepts. For a more detailed description, refer to [9,67–72].

In fuzzy logic, subsets are characterized as either crisp or fuzzy. To
illustrate the difference between the two, consider the crisp subset A of
the universe of discourse X. As A is crisp, its boundaries are exact and
hence, the belonging of a certain variable x in A is also exact. And thus,
the statement “x belongs in A” is either completely true or completely
false depending on the value of x and the boundaries of A. On the
contrary, if subset A were instead fuzzy with inexact boundaries, the
belonging of x in A is then inexact. When this is the case, the statement
“x belongs in A” can now also be partially true, and the degree to which
it is true (or in other words, the degree of satisfaction of the statement)
representable as a fraction between 0 and 1. A value of 0 implies the
statement to be completely false, a value of 1 implies it to be completely
true, and any other value in between implies it to be partially true. The
value of this fraction given a particular value of x is as defined by the
assigned membership function relating the two variables. Membership
functions can take any form depending on the system that is being
modeled and the subjective perceptions of agents. In practice, mem-
bership functions are usually defined as triangular, trapezoidal,
Gaussian, or bell-shaped.
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A fuzzy logic problem is typically solved through a fuzzy inference
system (FIS) comprising a set of algorithms [24]. A FIS facilitates the
mapping of inputs to one or several outputs via an inference mechanism
and a series of fuzzy if-then rules. Fuzzy rules are commonly con-
structed based on human knowledge, intuition and heuristics [24].
They follow the format “if x is A then y is B.” The former part is known
as the antecedent and represents the application of specific values to the
inputs, while the latter part is the consequent and represents the re-
sulting output value or values [24].

2.2.2. Fuzzy logic and behavioral economics
Various scholars from different disciplines ranging from psychology

to economics to engineering have proposed fuzzy logic as a suitable tool
for modeling human behavior. Tron and Margaliot [65] described fuzzy
logic as an effective means of creating models according to intuition
and observed behaviors of agents. Nobre et al. [49] considered it an
adequate computational and mathematical framework for representing
approximate reasoning considering natural concepts in everyday life,
which one forms from personal self-knowledge, observations and ex-
periences, and which according to Bernstein [73], have “fuzzy bound-
aries.”

Against this backdrop, fuzzy logic can be deemed as particularly
appropriate for the measurement and understanding of behavioral
economic principles. E.g., Trillas [66] regarded it as an effective
method for incorporating realistic model assumptions based on “non-
standard” preferences (as defined in behavioral economics, and which
have also been characterized as fuzzy [66,74]), and for measuring an
individual’s different degrees of rationality. The behavioral economic
concept most strongly associated with fuzzy logic thus far is bounded
rationality. Since bounded rationality manifests as a degree of deviation
from the expected behavior (where, as described above, is as defined by
classical economics considering solely monetary factors), it can be seen
as analogous to a variable’s degree of membership in a fuzzy subset
[49].

However, as discussed by Trillas [66], research on behavioral eco-
nomics and bounded rationality is still not sufficiently influenced by
fuzzy logic. This is likely due to the yet limited number of studies with
practical examples demonstrating the use of the method to explain or
mimic human behavior. Herein lies an area of contribution of this
present paper. It is hoped the fuzzy integrated energy behavior model
developed here will be of interest to behavioral economists as an ap-
plication of fuzzy logic to capture and investigate key concepts from the
field.

2.2.3. Applications in energy demand modeling
2.2.3.1. Without consideration of behavioral factors. Traditionally, the
large majority of fuzzy logic applications have been to solve
engineering problems [75] e.g. to optimize automated system
controllers [76,77]. In energy use modeling, there too have been
engineering applications of fuzzy logic, e.g. to make quantitative
predictions of short-term energy loads of power systems [78–82], but
these studies considered just physical factors with no regard for human
behavioral aspects. For instance, Pandian et al. [83] considered the
effects of time and climatic variables, while Al-Anbuky et al. [84]
geographic and demographic variables. For more accurate predictions,
some studies have combined fuzzy logic with neural networks [85–87].
Fuzzy logic has also been combined with clustering; e.g. Räsänen et al.
[88] used self-organizing maps and the k-means algorithm to categorize
consumers into groups, then fuzzy logic to further characterize them. In
the field of energy, fuzzy logic has also been used to develop intelligent
controllers for optimizing building cooling and/or heating systems to
achieve maximum thermal comfort. Such fuzzy controllers, which have
been applied in both residential and commercial settings, commonly
receive the inputs of weather conditions and building characteristics.
For salient examples of studies on this topic, see Ahmed et al. [89],
Lygouras et al. [90] and Karunakaran et al. [91].

2.2.3.2. With partial consideration of behavioral factors. There have also
been energy studies using fuzzy logic that have sought to formulate the
problem from the consumer’s perspective (even though not exclusively)
and with some consideration of behavioral factors. For example,
Kiartzis et al. [78], Mamlook et al. [82] and Ranaweera et al. [92]
developed fuzzy models to predict short-term electricity load from
consumers’ historical energy consumption (which can be taken as a
representation of human behavior). Also, Zhai and Williams [93]
employed fuzzy logic to relate consumer perception variables to the
adoption of renewable energy systems. Such studies are still few,
however.

As for fuzzy logic studies specifically focused on residential energy
consumption (as in this present study), those including behavioral
factors are even fewer. E.g. Michalik et al. [23] used fuzzy linguistic
variables to account for uncertainties in individuals’ preferences in re-
gard to their use of home appliances. In another study, Zúñiga et al.
[24] used fuzzy logic to model the energy consumption from the use of
home appliances by considering users’ schedules and routines given
their individual energy behaviors. Similarly, Ciabattoni et al. [25] de-
veloped a fuzzy model of residential electricity use considering con-
sumer scheduling patterns, and also their sensibility towards rational
energy use depending on monetary factors. Further, Keshtkar and Ar-
zanpour [28] developed a fuzzy controller for the thermostat of a re-
sidential system considering electricity prices and occupant schedules.
Rezeka et al. [27] also developed a fuzzy controller to optimize the
temperature and humidity of residential buildings, but one based on the
order of importance of rooms, which indirectly depends on their use
patterns by occupants.

While the above-mentioned studies constitute a promising start in
employing fuzzy logic as an instrument to model human behavior in
energy management, they were mostly confined to short-term con-
sumption problems and represented human behavior only partially, i.e.,
they considered mostly curtailment behavior, and solely by the mod-
eling of schedules, consumption histories and household routines. The
studies did not consider at all behavioral economic principles nor in-
vestigated the behavioral drivers behind energy usage. Thus, this pre-
sent paper is an advancement over the previous studies. Not only does
the fuzzy model developed herein explicitly incorporate key behavioral
economic concepts, it also considers both curtailment and efficiency
actions. Moreover, the fuzzy model in this paper is targeted at pre-
dicting long-term energy consumption (as opposed to the fuzzy models
of the previous studies, which aimed at making short-term estimations).

3. Methods and data

3.1. Overview of fuzzy model

Fuzzy logic is used to develop a model to simulate the energy effi-
ciency and curtailment behaviors of residential agents to predict the
cooling energy consumption in Hong Kong. Each agent is assumed as
the decision-making member of his or her household. Thus, for the
remainder of the paper, the terms “agent” and “household” shall be
used interchangeably. (In this paper, no differentiation is made between
the two even though the energy behavior literature does differentiate
between individual-level and household-level [30] energy decision-
making, and the different factors affecting them.) See the following for
the main equation and principles of the model. The model centers
around Eq. (1) below to estimate the cooling energy consumption of a
household in a given month m:

= ⎛
⎝

⎞
⎠

E Cap
EER

H1
m m (1)

Em is the energy consumed (in kWh) over the month, Cap the total
cooling capacity of the household’s air-conditioning (AC) system (in
kW), EER the energy efficiency ratio of the AC system (in W/W), and Hm

the AC system’s total number of hours of operation in month m. Note
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that inherent to the equation is the assumption that the AC system runs
at full capacity whenever operated. Summing Em over all months in the
cooling season (which in the case of Hong Kong, starts in May and ends
in October) gives the annual cooling energy demand for the year, Ea.

The Fuzzy Logic Toolbox of MATLAB [72] is used to construct the
model, which comprises three FISs [24]. Each FIS predicts a decision
corresponding to a particular variable in Eq. (1): FIS 1 predicts Cap, FIS
2 predicts EER and FIS 3 predicts Hm. FISs 1 and 2 aim to represent the
efficiency behavior of the household and are applied at the start of the
simulation. FIS 3 aims at representing the household’s curtailment be-
havior and is applied on an ongoing basis. The FISs consist of mem-
bership functions defined according to common practices in the lit-
erature [69–71] and intuition, and by trial and error to produce results
of the highest accuracy possible when compared to historical data. Each
receives a unique set of inputs fixed according to expert knowledge and

intuition. The inputs represent demographic and psychographic [22]
variables deemed as having the greatest influence on consumer AC
purchase and usage decisions [44], and are fed to the FISs as crisp
numerical values. The inputs are first fuzzified by the FISs according to
the membership functions constituting the FISs to identify their corre-
sponding linguistic terms. Fuzzy rules (Table 1) which have been de-
fined following intuition and tuned to yield the most accurate results
(as in the case of the membership functions) are then applied to yield
intermediate fuzzy outputs. Finally, to produce the final desired crisp
outcomes, the fuzzy intermediates are defuzzified by the centroid
method [72] according to, again, the membership functions of the FISs.

All 3 FISs are of the Mamdani type, the most widely used FIS type
[24,72,94]. Mamdani inference is selected as it is considered to be the
most intuitive and well suited to human input [72,95] making it be-
fitting for use here considering the study objective to model energy

Table 1
Fuzzy if-then rules constituting FISs 1, 2 and 3; the antecedent and consequent variables, and linguistic terms are as defined in the main text.

Rule Antecedent (IF) Consequent (THEN) Rule Antecedent (IF) Consequent (THEN)

PH I PE T RH ENV Cap EER PU PH I PE T RH ENV Cap EER PU

FIS 1 FIS 2 (con’t)
1 – VL – – – – VL – – 45 L H N – – – – H –
2 – L – – – – L – – 46 L H E – – – – VH –
3 – M – – – – M – – 47 L H VE – – – – VH –
4 – H – – – – H – – 48 – VH VC – – – – M –
5 – VH – – – – VH – – 49 – VH C – – – – H –

50 S VH N – – – – H –
FIS 2 51 S VH E – – VH –
1 – – – – – I – L – 52 S VH VE – – – – VH –
2 – – – – – NR – L – 53 N VH N – – – – VH –
3 – – – – – A – M – 54 N VH E – – – – VH –
4 – – – – – R – H – 55 N VH VE – – – – VH –
5 – – – – – VR – VH – 56 L VH N – – – – VH –
6 – VL VC – – – – VL – 57 L VH E – – – – VH –
7 – L C – – – – VL – 58 L VH VE – – – – VH –
8 S VL N – – – VL –
9 S VL E – – – – VL – FIS 3
10 S VL VE – – – – VL – 1 – – – – – I – – H
11 N VL N – – – – VL – 2 – – – – – NR – – M
12 N VL E – – – – L – 3 – – – – – A – – M
13 N VL VE – – – – L – 4 – – – – – R – – M
14 L VL N – – – – VL – 5 – – – – – VR – – L
15 L VL E – – – – L – 6 – – – CD VD – – – VL
16 L VL VE – – – – M – 7 – – – CL D – – – L
17 – L VC – – – – VL – 8 – – – W N – – – M
18 – L C – – – – VL – 9 – – – H W – – – H
19 S L N – – – – VL – 10 – – VH VW – – – VH
20 S L VE – – – – L – 11 – VL VC – – – – – H
21 N L N – – – – L – 12 – VL C – – – – – M
22 N L E – – – – M – 13 – VL N – – – – – L
23 N L VE – – – – M – 14 – VL E – – – – – VL
24 L L N – – – – L – 15 – VL VE – – – – – VL
25 L L E – – – – M – 16 – L VC – – – – – H
26 L L VE – – – – H – 17 – L C – – – – – M
27 – M VC – – – – VL – 18 – L N – – – – – M
28 – M C – – – – L – 19 – L E – – – – – L
29 S M N – – – – L – 20 – L VE – – – – – VL
30 S M E – – – – M – 21 – M VC – – – – – VH
31 S M VE – – – – M – 22 – M C – – – – – H
32 N M N – – – – M – 23 – M N – – – – – M
33 N M E – – – – H – 24 – M E – – – – – M
34 L M N – – – – M – 25 – M VE – – – – – L
35 L M E – – – – H – 26 – H VC – – – – – VH
36 L M VE – – – – VH – 27 – H C – – – – – VH
37 – H VC – – – – L – 28 – H N – – – – – H
38 – H C – – – – M – 29 – H E – – – – – M
39 S H N – – – – M – 30 – H VE – – – – – L
40 S H E – – – – H – 31 – VH VC – – – – – VH
41 S H VE – – – – H – 32 – VH C – – – – – VH
42 N H N – – – – H – 33 – VH N – – – – – VH
43 N H E – – – – H – 34 – VH E – – – – – H
44 N H VE – – – – VH – 35 – VH VE – – – – – M
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consumption according to human intuition and from the perspective of
the individual decision-maker. Examples of previous studies that have
used Mamdani FISs for similar purposes are [24] and [96]; the former
employed fuzzy logic to model human behavior and the latter to model
human emotions. See Fig. 1 for a schematic representation of the 3 FISs
and the following subsections for their detailed description.

3.2. Input variables

There are 3 groups of inputs to the FISs comprising altogether 6
variables. The first group consists of variables affecting household fi-
nance, namely the monthly income, I and planning horizon, PH of the
household of interest, and electricity price, PE. The roles these factors
play in energy efficiency and curtailment behaviors are well docu-
mented [13,22,44,97]. Depending on their individual roles, I is made
present in all three FISs of the model, while PE in only FISs 2 and 3. PH
is made present in FIS 2 to capture the influence of delayed payoffs
from investing in higher energy efficiency devices [12] on consumer
purchase decisions.

The second group of inputs comprises 2 variables, namely ambient
temperature, T and relative humidity, RH, both of which affect thermal
comfort, and which vary by the hour and from month to month.
Thermal comfort has been strongly associated with energy curtailment
behavior in the literature [12]. It has been suggested that curtailment
actions often correlate with sacrificing thermal comfort, which blocks
energy-saving behavior [12]. This implies that consumers would con-
sider energy conservation actions only if there is zero or minimal loss of
comfort [98,99]. In this study, to depict these effects, T and RH are set
as, among others, inputs to FIS 3, which, as mentioned above, is the sole
FIS among the 3 relating to the curtailment aspect of the problem.

In contrast to the first two groups of inputs whose members concern
“selfish” considerations [47], the third group comprises a single 0-to-1
variable representing the sense of environmental responsibility, ENV of
the household modeled, which is “selfless” [47] and which leads to pro-
environmental actions. (In this paper, “environmental responsibility” is
meant in a general way that is encompassing all of one’s environmental
“values,” “beliefs,” and “attitudes” which to some, are different con-
cepts [18,21] but to others, the same [19].) An ENV of 0 denotes
complete indifference towards the environment. A non-zero ENV de-
notes some consideration for the environment that increases as ENV
increases and peaks when ENV is 1. Here, ENV is included in FIS 2 to
incorporate its effects on efficiency behavior, and FIS 3 on curtailment
behavior. See Section 3.6 below for more on the variable and this
study’s treatment of it.

3.3. FIS 1

As described above, FIS 1 predicts Cap, i.e. the total AC capacity of
the household modeled. FIS 1 estimates Cap from a single input, I, the
household’s monthly income, which it fuzzifies using a set of bell-
shaped membership functions for five linguistic values, “VL” (very low),
“L” (low), “M” (medium), “H” (high) and “VH” (very high) over the
universe of discourse [USD 0, USD 6500]. The universe of discourse is

defined so that its mid-point coincides with the median household in-
come in Hong Kong of approximately USD 3250 [100]. The fuzzy value
of Cap is inferred from the fuzzy value of I via 5 fuzzy if-then rules (see
Table 1) developed assuming positive correlations between income and
property size, and property size and AC capacity [101]. Generally, the
rules assume that low-income households occupy small properties, and
hence, require relatively small AC capacities. Likewise, high-income
households presumably inhabit large properties with greater AC capa-
cities. Finally, Cap is defuzzified according to Gaussian membership
functions for five linguistic values, “VL” (very low), “L” (low), “M”
(medium), “H” (high) and “VH” (very high) over the universe of dis-
course [0 kW, 7 kW]. The universe of discourse is specified such that its
mid-point corresponds to 3.5 kW, the cooling capacity typically re-
quired for a 40m2 apartment [101], the average residential property in
Hong Kong [102]. See Fig. 2 for a summary and graphical view of the
membership functions in FIS 1.

3.4. FIS 2

FIS 2 predicts EER, the energy efficiency ratio of the AC system of
the household modeled. FIS 2 applies a series of fuzzy if-then rules
(Table 1) to estimate the fuzzy value of EER, which it subsequently
defuzzifies according to a set of Gaussian membership functions for five
linguistic values, “VL” (very low), “L” (low), “M” (medium), “H” (high)
and “VH” (very high). The membership functions are over the universe
of discourse [0 W/W, 6.6W/W] whose upper limit of 6.6W/W is set
based on the highest EER of residential cooling devices currently
available in Hong Kong [103].

FIS 2 receives I (representing monthly income), PE (representing
electricity price), PH (representing planning horizon) and ENV (re-
presenting environmental responsibility) as inputs. It contains 58 fuzzy
rules. The input I is fuzzified according to the same I membership
functions in FIS 1 (as described in Section 3.3 above). As for the input
PE, it is fuzzified using bell-shaped membership functions for five lin-
guistic terms, “VC” (very cheap), “C” (cheap), “N” (normal), “E” (ex-
pensive) and “VE” (very expensive) over the universe of discourse [0
USD/kWh, 0.3 USD/kWh], which is set considering real electricity
prices in Hong Kong [104,105].

The input PH serves as a proxy for biased discount rate, which has
been identified [47,106,107] as a major behavioral factor affecting
consumer purchase decisions but which is less straightforward to assign
appropriate linguistic values to (as needed to fuzzify the variable). The
use of PH as a proxy is justified. Behavioral economists have suggested
that due to hyperbolic discounting, the two variables are highly cor-
related such that, typically, the higher the discount rate, the shorter is
PH, and vice versa [106]. In FIS 2, PH is fuzzified using bell-shaped
membership functions for three linguistic terms, “S” (short), “N”
(normal) and “L” (long) over the universe of discourse [0 years,
30 years]. This range is defined so that its mid-point is 15 years, which
is about the average lifetime of AC units [108]. The choice of bell-
shaped functions is dictated by their performance in preliminary runs.

As mentioned above in Section 3.2, the input ENV is included to
capture the behavioral economic concept of pro-environmental psy-
chological constructs [47]. It is fuzzified using trapezoidal membership
functions for five linguistic terms, “I” (indifferent), “NR” (not re-
sponsible), “A” (aware), “R” (responsible), and “VR” (very responsible)
on the universe of discourse [0, 1]. Again, the trapezoidal functions are
favored over other function types considering their performance in
preliminary runs.

For a summary and graphical view of the membership functions in
FIS 2, see Fig. 2. The transition from the inputs to the output is per-
formed by the associated fuzzy rules in Table 1. The rules are based on
the following logic: It is presumed that a household’s tendency to select
a high EER device increases with PE and PH as agents typically view
purchases of energy-efficient devices, which are usually more ex-
pensive, as investments that can be expected to lead to savings in the

Fig. 1. Schematic representation of the fuzzy inference systems (FISs) 1, 2 and 3 devel-
oped; the numbers in parentheses associated with the inputs and outputs denote the
number of linguistic terms each variable takes; the numbers in parentheses associated
with the FISs denote the number of fuzzy rules in each FIS; the input and output variables
are as defined in the main text.
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long term through lower energy consumption and hence, lower power
bills. Agents with short PH values are incapable of recognizing this
potential for cost savings, especially when PE is low, while agents with
longer PH values can better perceive the potential. It is further pre-
sumed that the inclination to purchase a high EER device increases with
I. This is supported by behavioral economics, which have found a po-
sitive correlation between income and energy efficiency, and have
suggested the higher literacy levels of affluent households to possibly
explain the correlation between the two [109]. Finally, when specifying
the fuzzy rules pertaining to ENV, it is presumed the prospect of se-
lecting a high EER device to increase with ENV.

3.5. FIS 3

FIS 3 aims to capture the cooling energy curtailment behavior of the
household modeled. By running the FIS multiple times, once for every
hour that 1 or more occupants are home, an approximation can be
made of the household’s hourly probabilities of AC usage and from
there, Hm, the monthly hours of AC operation over the cooling season.
FIS 3 first predicts hourly AC usage probability, PU as either “VL” (very

low), “L” (low), “M” (medium), “H” (high), or “VH” (very high). It then
defuzzifies the result according to Gaussian membership functions over
the universe of discourse [0, 1] to yield the final output of a crisp 0–1
number. An outcome of PU close to 1 indicates a high probability and
vice versa. The membership functions are set following Ciabattoni et al.
[110] and Zúñiga et al. [24], who used fuzzy logic to model the
availability of users to activate electric appliances. Where PU is pre-
dicted to be greater than a certain threshold, the AC system is taken to
be in operation. In the present study, this threshold is set by trial and
error at about 0.6 based on preliminary results.

Among the inputs to FIS 3 are I and PE, representing monthly in-
come and electricity price respectively, from the 1 st group of inputs
relating to household finance. They are fuzzified following the same I
and PE membership functions in FIS 2 (see Section 3.4 above). Inputs to
FIS 3 also include two climate parameters, as climate has been found to
have significant effect on residential cooling energy consumption as
residents’ use of AC devices is more a function of exterior conditions
than interior ones [44]. The two climate inputs are ambient tempera-
ture, T and relative humidity, RH from the 2nd group of inputs relating
to personal thermal comfort. Gaussian membership functions for five

Fig. 2. Membership functions of the fuzzy model; the linguistic terms in the figure are as defined in the main text.
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linguistic values, “CD” (cold), “CL” (cool), “W” (warm), “H” (hot) and
“VH” (very hot) over the universe of discourse [0 °C, 40 °C] are used to
fuzzify T. The universe of discourse is defined considering the climate in
Hong Kong. To fuzzify RH, trapezoidal membership functions for five
linguistic terms, “VD” (very dry), “D” (dry), “N” (normal), “W” (wet)
and “VW” (very wet) over the universe of discourse [0%, 100%] are
used. In both cases, the function types are selected based on common
(but not exclusive) practices in the literature [69,71]. In addition, FIS 3
receives as input ENV (denoting environmental responsibility) of the
3rd group of inputs, which it fuzzifies using the same ENV membership
functions in FIS 2. See Fig. 2 for a graphical view of the membership
functions in FIS 3.

The transition from the inputs to the output is realized by 35 fuzzy
rules (Table 1) developed assuming PU to be medium under moderate
values of T, RH and ENV, and that it increases (decreases) as T or RH
increases (decreases). It is also assumed PU to be inversely proportional
to PE, based on intuition, but proportional to I, in accordance with
behavioral economics, which have identified a positive correlation
between income and energy consumption [22,109]. Lastly, the ENV-
related fuzzy rules of the FIS presume that PU decreases as ENV in-
creases and increases as ENV decreases, in line with basic sense.

3.6. Fuzzy model configuration

To reflect the ongoing debate in the literature if pro-environmental
psychological constructs constitute antecedents of just energy efficiency
behavior or curtailment behavior, or both [20–22,30], results are ob-
tained for several configurations of the fuzzy model. That many of the
existing studies were not about energy behavior specifically in relation
to cooling device purchase and usage adds to the uncertainty. Thus, to
reflect the ambiguity, and to study specifically the matter in the context
of this current study, 4 alternative model structures are defined and
examined. The structures differ in their treatment of the environmental
responsibility input, ENV which is present in FISs 2 and 3: (a) In
Structure A, ENV is an antecedent for both efficiency and curtailment
behaviors and thus, is set to the provided input value in both FISs 2 and
3. (b) In Structure B, ENV is an antecedent to only efficiency behavior
and thus, is set to its input value in just FIS 2 but 0 in FIS 3. (c) In
Structure C, ENV is an antecedent to only curtailment behavior and
thus, is set to 0 in FIS 2 but its input value in FIS 3. (d) In Structure D,
ENV affects neither behavior, and thus, is set to 0 in both FISs 2 and 3.
(As described in Section 3.2, an ENV of 0 denotes environmental in-
difference.)

As the true distribution of ENV values among consumers in Hong
Kong (and elsewhere) is yet unknown, for each of Structures A-C, it is
further defined 10 scenarios of non-zero ENV input ranging from 0.1 to
1. This yields 30 scenarios: A1-A10, B1-B10 and C1-C10 with A1, B1
and C1 being assigned the lowest ENV value of 0.1, and A10, B10 and
C10 the highest ENV value of 1. Combining the scenarios with Scenario
D, the sole scenario where the model structure is D, makes there alto-
gether 31 scenarios for this study.

3.7. Model validation

The results are validated against historical 2010–2014 data on the
average monthly consumptions of residential cooling energy in Hong
Kong during that period. The historical data are estimated from recent
annual statistics published by the Electrical and Mechanical Services
Department (EMSD) of Hong Kong [111] and monthly per capita data
for 1970–2009 by Lee et al. [112]. (Monthly EMSD statistics are un-
available.)

There are altogether 4 sets of results, one for each of the 4 model
structures, A to D defined above. For each structure, the fuzzy model is
run multiple times with different inputs of monthly income, I to capture
the distribution of household income in Hong Kong as reported by the
city’s Census and Statistics Department [100] and provided in Table 2.

For all income levels, the simulations are made assuming 80% of the
population follow a 12-h household occupancy pattern (where occu-
pants are presumed home every 6 pm to 6 am the following day), while
the remaining 20% follow a 19-h pattern (where occupants are pre-
sumed home every 1 pm to 8 am the following day) [113]. Weight
averaging the outputs yields the final results for validation.

To generate the results, the simulations are run on an hourly basis
over the 5 year validation period given hourly ambient temperature, T
and relative humidity, RH data derived using the method of Erbs et al.
[114] (described in detail by Papakostas et al. [115] and Peng et al.
[116]). The T and RH data are derived based on historical monthly
mean ambient dry-bulb temperature and humidity data from the Hong
Kong Observatory [117], and monthly averages of the solar clearness
index [118,119] from the Atmospheric Science Data Center (ADSC) of
the National Aeronautics and Space Administration (NASA) of the
United States (US) [120].

In all the simulations, wherever it is present and non-zero, the input
ENV (representing environmental responsibility) is assumed constant
across all households regardless of income or occupancy pattern at a
particular 0.1-to-1 value as its true distribution is unknown. Though,
the value of ENV is varied across scenarios, as explained in Section 3.6,
to investigate its effects. Further, for simplicity, the inputs PE (denoting
electricity price) and PH (denoting planning horizon) are also assumed
constant across all households, and across all scenarios too, at 0.15
USD/kWh and 15 years respectively. These values represent the mid-
points of the universes of discourse underlying the membership func-
tions of the two variables. It is kept constant across all households and
scenarios as well the membership functions and fuzzy rules of the
model, again for simplicity.

4. Results and discussion

4.1. Performance among model scenarios

In this section, to prove the viability of the fuzzy model developed,
and to examine the differences in model performance among the model
structures A to D, the simulation results are compared against estimates
of the monthly means of residential cooling energy use in Hong Kong
over 2010–2014. The model performance is evaluated using the mea-
sure coefficient of determination, R2. A positive R2 close to unity in-
dicates a high model accuracy, while a negative R2 denotes poor ac-
curacy. Alongside R2, the measure root mean square error (RMSE) is
also used to make the evaluation; the smaller the RMSE, the higher the
accuracy and vice versa.

Of the 31 scenarios of varying model structures and input values of
ENV (representing environmental responsibility) defined in Section 3.6,
14 yield results matching the historical data with a positive R2. Of the
14, 7 are of the model structure C, which considers ENV to influence
just energy curtailment behavior; 5 of the structure A, which considers
ENV to influence both efficiency and curtailment behaviors; and the
remaining of the structure B, which considers ENV to influence just
efficiency behavior. Under Scenario D, the sole scenario where the
model structure is D, which considers ENV to influence neither beha-
vior, the R2 is negative. Table 3 and Fig. 3 present the results for the 14
well-performing scenarios, and Scenario D as well for reference.

Table 2
Distribution of household income in Hong Kong (adapted from [100]).

Monthly household income (USD) Percentage of total households (%)

Less than 773 10.7
774–2577 31.6
2578–3866 17.6
3877–5155 12.7
5156–6444 8.1

More than 6445 19.2
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As can be seen from Table 3, where the model structure is A, 5 out of
the 10 scenarios considered (A1-A10) yield a positive R2. The 5 sce-
narios correspond to ENV values between 0.2 and 0.6. When ENV is 0.4,
under Scenario A4, the results are the best among all the 31 A and non-
A scenarios considered with the highest R2 of 65.9%, and least RMSE of
28.3 kWh/hh. When ENV is 0.1, or 0.7 and higher, R2 becomes nega-
tive. Where the model structure is B, 2 out of the 10 B scenarios con-
sidered (B1-B10) yield a positive R2. They are Scenarios B5 and B6 with
ENV inputs of 0.5 and 0.6 respectively. Finally, where the model
structure is C, the ENV inputs for the 7 scenarios yielding a positive R2

range from 0.2 to 0.8.
The results show the model performance to be highly sensitive to

ENV, and suggest ENV inputs between 0.2 and 0.6 to be most accurate
when in relation to efficiency behavior, and 0.2–0.8 when in relation to
curtailment behavior. The results also show the model performance to
be highly sensitive to the model structure, if A, B, C or D, and suggest A-
C to be better performing than D. This finding is consistent with past
studies [21,22], which have found pro-environmental psychological
constructs to be antecedents of energy behavior and to have at least
some effect on it, however small. Thus, since Structure D assumes total

environmental indifference, and therefore, environmental concerns to
have zero impact on both efficiency and curtailment behaviors, that
Structure D performs worse than Structures A-C is as can be expected.

The results though cannot be taken definitively given the sensitivity
of the outputs to the fuzzy rules and membership functions defining the
fuzzy model which, admittedly, are to some extent, subjective (but not
arbitrary). The results are nonetheless, meaningful as they demonstrate
the feasibility of using fuzzy logic to explicitly incorporate key beha-
vioral economic principles in a single coherent mathematical frame-
work and encapsulate the inexact intuitive nature of human decision-
making for predictive purposes and deeper fundamental understanding.
The model, though preliminary, provides a valuable basis for further
research on modeling human decision-making, whether within or
without the context of consumer energy behavior.

4.2. Comparison with alternative results

To further examine the fuzzy model’s feasibility, Fig. 3 compares the
model predictions of the monthly means of household cooling energy
use in Hong Kong from 2010 to 2014 for the 15 scenarios in Table 3
against those of an alternative non-fuzzy approach based on the
equivalent full load hours (EFLH) metric [121,122]. The EFLH of a
cooling system are the number of hours the system would need to op-
erate at full load to consume the same amount of energy it consumes on
average. The method recently gained favor as EFLH data can be readily
calculated from just local annual or monthly temperature, humidity and
solar clearness data [121], making the method easily accessible. The
EFLH method is selected for use here over other simplified energy es-
timation methods (e.g. degree-days methods) as it is flexible to ac-
commodate mixed building occupancy patterns, thus allowing for, to a
certain degree, the consideration of human behavior.

EFLH data for 2010–2014 for Hong Kong are calculated using the
method of Papakostas et al. [121,122]. To derive the EFLH data, the
required inputs of monthly means of ambient dry-bulb temperature,
ambient humidity, and the solar clearness index are obtained as de-
scribed in Section 3.7. In addition, the required inputs of cooling bal-
ance-point temperature and outdoor design temperature are taken
from, respectively, the Ministry of Housing and Urban-Rural Develop-
ment of China [123], and the 2009 edition of the American Society of
Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)
Handbook [124]. EFLH data are derived for 12-h and 19-h household
occupancy patterns. See Table 4 for monthly averages of the derived 12-
and 19-h EFLH data, and their weighted means that have been com-
puted assuming the same 80:20 ratio [113] as presumed when speci-
fying the fuzzy model (as described in Section 3.7). The final results in
Fig. 3 are computed from the EFLH data using Eq. (1) but with weighted
EFLH values in place of Hm (which denote the hours of AC operation)
and assuming an AC system capacity, Cap of 3.5 kW and energy effi-
ciency ratio, EER of 3.12W/W based on their averages for the city
[103]. (Unlike for the fuzzy model, single values of Cap and EER are
used here instead of distributions since the EFLH method, as it is ty-
pically applied, has no means of estimating their distributions.)

Table 3
A, B and C scenarios of the fuzzy model, differentiated by their assumptions of ENV, with
results matching historical 2010–2014 data with a positive R2 and relatively small RMSE;
the scenarios are ranked according to their R2 values; the results for Scenario D are also
given for reference; estimates of Ea, as predicted by the fuzzy model following Eq. (1),
under the various scenarios are provided for comparison against the historical average of
1592 kWh/hh.

Rank Scenario R2 RMSE Input
value

Actual
value of

Actual
value of

Ea

(%) (kWh/hh) of ENV ENV in
FIS 2

ENV in
FIS 3

(kWh/hh)

1 A4 65.9 28.3 0.4 0.4 0.4 1616.4
2 A3 60.2 30.6 0.3 0.3 0.3 1681.4
3 A2 58.7 31.2 0.2 0.2 0.2 1696.3
4 C2 58.7 31.2 0.2 0 0.2 1696.3
4 C3 58.7 31.2 0.3 0 0.3 1696.3
4 C4 58.7 31.2 0.4 0 0.4 1696.3
4 C5 58.7 31.2 0.5 0 0.5 1696.3
8 C6 56.9 31.8 0.6 0 0.6 1656.1
8 C7 56.9 31.8 0.7 0 0.7 1656.1
8 C8 56.9 31.8 0.8 0 0.8 1656.1
11 B5 34 39.4 0.5 0.5 0 1599.5
12 B6 33.2 39.7 0.6 0.6 0 1587.6
13 A5 20.9 43.1 0.5 0.5 0.5 1403.8
14 A6 16.8 44.3 0.6 0.6 0.6 1397
21 D −90 66.9 0 0 0 1924.7

Fig. 3. Monthly means of household cooling energy use in Hong Kong from 2010 to 2014
as predicted by the fuzzy model under the 15 scenarios in Table 3 in comparison with
historical values estimated from the literature, and predictions obtained from EFLH data.

Table 4
19-h and 12-h monthly EFLH values for Hong Kong, and their weighted means computed
assuming 20% of the population follow a 19-h household occupancy pattern and the
remaining 80% follow a 12-h pattern.

Month 19-h EFLH 12-h EFLH Weighted mean EFLH

May 84 44 52
June 197 107 125
July 247 136 159
August 269 147 171
September 206 107 127
October 84 36 46

Total 1087 577 680
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As Fig. 3 demonstrates, the EFLH results can broadly capture the
major trends of the historical data, i.e., like the historical data, the
EFLH results predict cooling energy use to increase from May to July,
peak in August, and decrease from August to October. However, the
results show a systematic underestimation of the historical values.
Conversely, the fuzzy model predictions in the figure all not only cap-
ture the trends of the historical data, but by and large, their magnitudes
as well. This difference in performance between the 2 approaches to
energy estimation can be attributed to the EFLH method, unlike the
fuzzy model, not having any inherent mechanism to predict the dis-
tributions of EER and Cap across the population and thus, not ac-
counting for them. Further, again unlike the fuzzy model, the EFLH
method is based on mostly just climate factors without considering the
human behavioral aspect of the problem. The results highlight the po-
tential of the fuzzy model as a promising alternative that is capable of
making predictions of even better, or at least comparable, quality than
traditional energy estimation methods.

4.3. Model sensitivity to inputs

This section examines the sensitivity of the output average annual
cooling energy demand, Ea as predicted by the fuzzy model (according
to Eq. [1]) to selected inputs. See Figs. 4 and 5 for the results. The
results provide additional validation to the fuzzy model, i.e., that it
behaves plausibly when the inputs are perturbed. (Where there is lack
of or insufficient validation data, sensitivity analyses have been applied
as a way of verifying model plausibility [125–127].)

Fig. 4 shows the sensitivity of Ea to ENV, which as has been de-
scribed above, is a 0–1 variable representing environmental responsi-
bility that is present in FISs 2 and 3. The sensitivity analysis is per-
formed by varying the input value of ENV between 0 and 1 while
keeping the other 5 inputs constant at their “base” values, i.e., their
values applied when generating the results in Section 4.1 and as spe-
cified in Section 3.7. In the figure, results are presented for all 4 model
structures, A-D. For Structure D though, the outcome is simply a hor-
izontal line as the structure fixes the actual value of ENV in FISs 2 and 3
constant at 0 irrespective of its input value. (As explained in Section
3.6, the actual value of ENV applied in computations is not necessarily
the same as its input but set to 0 depending on the model structure.)

From the results for Structures A-C in Fig. 4, it can be observed
several patterns, all of which are plausible: (i) For all the 3 structures,
Ea decreases as the input of ENV increases. (ii) The different predictions
of Ea by the different model structures converge to a single value cor-
responding to Structure D’s estimate of Ea as the input of ENV ap-
proaches 0. (iii) As the input of ENV approaches its maximum of 1, Ea as
estimated by Structures A and C approaches 0 but Ea as estimated by

Structure B remains relatively high. (iv) As the input of ENV increases,
Ea reduces at a faster rate under Structure A than under Structure B or
C.

Fig. 5 shows the results of a sensitivity analysis to evaluate the
impacts of varying monthly income, I, electricity price, PE and con-
sumer planning horizon, PH on Ea. Each line in the 3 subplots corre-
sponds to a scenario in Table 3. To obtain the results for I, the income
levels in Table 2 are perturbed by percentages of 10% increments while
retaining all other inputs, including PE and PH constant at their base
values. Similarly, the results for PE are obtained by perturbing its value
from its initial value of 0.15 USD/kWh while maintaining the other
inputs constant. PE is perturbed from 0.03 to 0.30 USD/kWh following
the universe of discourse of its membership functions in the fuzzy
model. In the same manner, the results for PH are obtained by per-
turbing its value from the initial value of 15 years over the universe of
discourse of its membership functions.

Subplot (a) of Fig. 5 shows Ea to increase with I. In the fuzzy model,
in line with literature findings [109], I is positively correlated with both
AC device efficiency, EER, and probability of AC usage, PU. The results
are such that, as I increases, the energy reduction from an increased
EER is insufficient to offset the growth in energy use from an increased
PU. Instead, the aggregated outcome is an increasing Ea with an in-
creasing I. The results are consistent with past studies on consumer AC
habits [128–133].

From subplot (b) of Fig. 5, it can be seen that Ea reduces as PE
increases. Again, this is consistent with the literature; past studies have
observed the same trend [130,132,134]. It has also been found from the
same past studies the sensitivity of energy use to electricity price to be
relatively modest [130,132,134]. This is in contrast to the results of
subplot (b), which show the sensitivity to PE to be relatively significant.
A possible reason for this discrepancy is that this present study in-
corporates the effects of PE on both efficiency and curtailment beha-
viors, whereas the past studies limited their investigation to just the
price effects on curtailment behavior and considered electricity price to
have no effect on efficiency behavior, which the studies treated as a
matter of lifestyle choice [130,132].

Finally, as shown in subplot (c), increasing PH from 3 to 15 years
generally results in a slight decrease in energy use, and any additional
increase in PH thereafter brings no further reduction. The results also
show the sensitivity of Ea to PH as compared to ENV, I and PE to be
minor. This is likely because PH affects only efficiency behavior, while
ENV, I and PE affect both efficiency and curtailment behaviors. There
are no firm findings as yet in the literature to confirm or disprove the
results here. Nonetheless, the results are plausible as it is reasonable to
expect that the longer the PH of consumers, the greater the value placed
on future rewards, and thus, the more probable the selection of higher
efficiency AC devices considering their greater prospect for future
savings in electricity cost. This in turn can be expected to lead to, on the
overall, a reduction in energy use.

4.4. Initial policy recommendations

The results of this study may be of interest to energy decision-ma-
kers such as the Hong Kong Green Building Council, which recently
launched the HK3030 Campaign targeting by 2030, a 30% reduction in
Hong Kong’s total building electricity use from the consumption in
2005 [135]. Given that space cooling accounts for 25% of the total
residential electricity consumption in the city [111], minimizing
cooling energy would contribute significantly to achieving the 30%
reduction target. As guidance for policy-making, Figs. 4 and 5 suggest
increasing consumer responsibility towards the environment, ENV,
electricity price, PE, and consumer planning horizon, PH as possible
ways of cutting cooling energy. The results also suggest that increasing
ENV and PE to have greater potentials for larger cuts than increasing
PH. (As shown in subplot (b) in Fig. 5, reducing household income, I
leads to less cooling energy consumption as well. However, lower I

Fig. 4. Sensitivity of Ea as predicted by the fuzzy model to the input value of ENV; results
are presented for each of Structures A–D.
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values are undesirable from the societal welfare point of view. Hence,
no further discussion on adjusting I for the said purpose shall be made
hereafter.)

Between increasing ENV and increasing PE, in most societies, the
former is more practicable. This is despite the latter being more
straightforward to implement. To increase PE would typically simply
require the local utility provider to take action, but can result in im-
mense public resistance and hence, increasing PE is often seen as so-
cially or politically unacceptable [47]. In light of this, a significant
portion of the targeted 30% reduction in Hong Kong’s total electricity
use under HK3030 is to be met through behavioral changes, including
changes to consumers’ curtailment and efficiency behaviors in regard to
their AC device purchase and usage decisions [135]. According to
plans, this will be achieved not by price interventions, but rather
through extensive education and publicity programs that will target
residents, educators, building industry professionals, energy specialists,
and the general public. The programs will contribute to creating shared
pro-environmental interests leading to increased ENV values among the
population.

Furthermore, considering the social construction of energy-related
decisions [18,30], peer pressure and peer comparison may lead to
further increases in ENV and with that, even greater reductions in en-
ergy consumption [136,137]. In fact, studies have shown individuals to
likely reduce their household energy consumption when informed of
the energy-saving performances of peers, especially when framed as a
positive social norm [138,139]. In a large social experiment conducted
in the US, the marketing company Opower found sending reports to
households comparing their energy consumptions to neighbors’ to re-
sult in satisfactory energy reductions [139]. The experiment demon-
strated that even without face-to-face interaction, peer influence can be
an effective force when distributed via appropriate information chan-
nels. Indeed, some consider the effects of peer influence to be more
lasting in the long-term than monetary interventions [4,23].

Further on increasing ENV to reduce energy use, Fig. 4 highlights
the importance of more empirical research to ascertain the influence of
pro-environmental constructs on human energy behavior, i.e., if they
are antecedents to just efficiency or curtailment behavior, or both. As
the figure shows, the effects of ENV on energy consumption can differ
quite significantly across Structures A to D, especially when ENV is
high. Thus, a clearer understanding of which of the 4 structures best
represents reality (which at present, is still uncertain) will lead to more
correct expectations of the potential of targeting increases in ENV for
reducing cooling energy consumption.

Future empirical work in this direction will also yield insight into
which of the two energy behaviors to target, if not both, for maximum

reductions in cooling energy use. While in the past, energy conservation
policies were mostly targeted at the curtailment side of the problem,
recent studies [13,15,16] have pointed toward the need for more in-
vestigation into the efficiency aspect as well. To motivate change in
efficiency behavior can be said to be more realizable with less effort as
it involves just one-time decisions, as opposed to modifying curtailment
behavior, which involves numerous repetitive actions [13]. Further,
changing efficiency behavior has been found by some to have a greater
energy saving potential than changing curtailment behavior [12,140].
Should future work find Structure B to be the more realistic, then it is
recommended that policy efforts concentrate on altering efficiency
behavior. However, should Structure A or C be found to be the more
realistic, then policy efforts should include altering curtailment beha-
vior as well.

Lastly, increasing PH can be problematic as it is a personal norm
that is internally motivated (as opposed to ENV which is a social norm
that is, at least partially, externally motivated) and thus, often quite
resistant to change [10]. Nonetheless, it may be possible to change a
consumer’s present bias, and with that, PH by increasing the awareness
of lifetime energy demands and operating costs of appliances, e.g., by
attaching labels with the relevant details [141]. This in turn will cause
consumers to value future rewards more and be more willing to pur-
chase energy efficient devices despite their higher purchase prices. In
time, a suggested program in Hong Kong [135] and ongoing programs
in the United Kingdom and Switzerland [141] will reveal the effec-
tiveness of energy and cost information labels on domestic appliances in
modifying the preferences of consumers for energy-efficient products.
Until there is solid evidence of the effectiveness of such programs, and
given the results in Fig. 4 that imply the influence of increasing PH on
energy consumption to be relatively small, it is recommended priority
be given to programs targeted at increasing ENV over those aimed at
increasing PH.

4.5. Limitations and future work

A major limitation of the fuzzy model developed, like most, if not
all, fuzzy models, is its subjective (but not arbitrary) nature.
Specifically, its membership functions and fuzzy rules are based mostly
on intuition, insights from behavioral economics and common practices
in the literature, and not on hard science as typically would equations
in a physical model. It should be noted though that this subjectivity is
unavoidable considering the intangible nature of the model objective,
i.e., to model human energy behavior. Nonetheless, it is hoped the
model provides a valuable start toward modeling human energy deci-
sion-making from the perspective of the decision-maker, a challenging

Fig. 5. Effects of varying (a) I, (b) PE and (c) PH on Ea; each line in the subplots corresponds to a scenario in Table 3; the results for I in subplot (a) are obtained by perturbing the income
levels in Table 2 by percentages of 10% increments while retaining all other inputs constant at their base values; the results for PE in subplot (b) are obtained by perturbing its value from
0.03 to 0.3 USD/kWh; the results for PH in subplot (c) are obtained by perturbing its value from 0 to 30 years.
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subject precisely because of the intangibility.
The fuzzy model is also limited by the difficulty in specifying certain

inputs, namely ENV and PH that are hard to measure and which vary
across individuals. For the same reasons, the membership functions of
the model representing the perceptions of the decision-maker can also
be problematic to define. In this paper, due to the lack of data, PH and
the membership functions are fixed according to best estimates and
assumed uniform across all individuals. ENV is also assumed uniform
across individuals, though varied from 0 to 1 for different scenarios. For
the purpose of this study, which are mainly to prove the concept of
using fuzzy logic to model human energy behavior, it suffices the ap-
proach taken. However, for further progress, future work is necessary to
determine the true values of ENV and PH, and true shapes of the
membership functions of the fuzzy model, and how they distribute
across different population groups.

Additional possible future work includes modeling real energy
conservation programs currently implemented (or planned to be im-
plemented) using the fuzzy model developed. For further under-
standing, it is worth modeling economic schemes such as rebate pro-
grams to lower the costs of energy efficient AC devices in the US [142]
and Australia [143], and/or social policies such as those in the US
[136,139] and Canada [144] targeting peer pressure as a potential tool
for promoting energy saving behavior. The results will provide new
insights into the role of such measures in influencing energy decisions.

The modeling of these programs can be achieved by defining ad-
ditional FISs to represent the effects of key policy actions on energy
efficiency and curtailment decisions. To adapt the model to different
programs, for each program, the membership functions of the model
will need to be altered to reflect the local climate, electricity prices, etc.
It may also be necessary to adjust the model’s fuzzy rules to capture the
consumer perceptions of the program’s particular location as affected
by the culture, demographics and economy of the region. Finally,
comparing the model predictions with real data and tweaking the
model so that the results replicate well the data will help validate the
model. Real detailed energy consumption data for this purpose are not
easily available; nevertheless, there exist projects such as the Pecan
Street Project by the University of Texas at Austin [145] that have made
great progress in collating and making accessible valuable location-
specific energy data.

5. Summary and conclusions

In this paper, fuzzy logic is used to develop an integrated model of
residential AC purchase and usage decisions. The work is driven by
weaknesses in existing energy policies based largely on traditional
economic theory, which assumes individuals to be completely rational
(profit-maximizing) and self-interested. Many of these policies have
failed to deliver the expected results leading to energy efficiency gaps,
often due to their negligence of behavioral factors. Thus, for more ef-
fective policy-making, behavioral factors can no longer be ignored.
Hence, the importance of integrated models combining traditional
economic theory with newer behavioral economic principles in a single
mathematical framework that promise deeper insights. Such models
however, are still relatively underdeveloped and limited in number.

This study has developed a fuzzy logic model to predict consumer
energy efficiency and curtailment behaviors, and the ensuing AC pur-
chase and usage decisions. The model is unique in that it is formulated
from the perspective of the human decision-maker. Key behavioral
economic concepts are captured in various ways. Bounded rationality is
captured by the employment of fuzzy logic itself, which is used to
formulate decision rules based on human intuition and perceptions. The
time discounting of gains is captured by the inclusion of the variable PH
(representing the consumer’s planning horizon) and its associated fuzzy
rules. Similarly, pro-environmental behavior is captured by the variable
ENV (representing the consumer’s level of environmental responsi-
bility) and the associated fuzzy rules.

To capture the ongoing debate if ENV drives just efficiency behavior
or curtailment behavior, or both, this study has considered 4 alternative
structures of the fuzzy model: Structure A assumes ENV affects both
efficiency and curtailment behaviors; Structure B assumes it affects only
efficiency behavior; Structure C assumes it affects only curtailment
behavior; and Structure D assumes it affects neither behavior. Results
are generated for each structure presuming conditions in Hong Kong
and compared against historical 2010–2014 data. The results are also
compared against estimates obtained using a different more traditional
approach, i.e., from specially derived EFLH data.

The results show Structures A-C to reproduce the historical data
reasonably well with positive R2 values up to over 65%. This allows
modelers some degree of confidence in the fuzzy model. Moreover,
perturbing key input variables produces plausible behaviors, thus pro-
viding additional validation to the model. Finally, comparing the fuzzy
model results with the EFLH estimates suggests the fuzzy model to be
capable of producing predictions of comparable or even better quality
than traditional methods.

While Structures A-C have been found to perform fairly well, the
same cannot be said of Structure D. Since Structures A-C assume en-
vironmentally concerned consumers while Structure D assumes en-
vironmentally indifferent ones, the results suggest environmental con-
siderations to constitute a non-insignificant driver affecting cooling
energy decisions. The results however, do not indicate which of
Structures A-C best represents reality. To ascertain this, future work is
recommended. As an analysis of the sensitivity of the fuzzy model to
ENV shows (Fig. 4), the effectiveness of increasing ENV for reducing
energy consumption can differ quite markedly across the different
model structures. Thus, greater clarity of which structure best matches
reality will enable better designs of energy conservation policies,
especially those directed at promoting environmental awareness.

To conclude, this paper has demonstrated the feasibility of fuzzy
logic as a means of mathematically expressing and integrating, in a
single coherent framework, behavioral economic principles to model
consumer AC purchase and usage decisions, and from there, predict
residential cooling energy consumption. The fuzzy model developed
relies solely on related behavioral and social parameters consistent with
human logic, perception and experience. It is useful for representing
human reasoning pertaining to the model objective for greater funda-
mental understanding of the “why” behind cooling energy use that
conventional building energy simulation models do not address. This in
turn, is essential for formulating more effective energy conservation
policies.
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